Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
A. V. Yatsenko, ${ }^{a *}$ K. A.

Paseshnichenko ${ }^{a}$ and H. Schenk ${ }^{\text {b }}$
${ }^{\text {a }}$ Chemistry Department, Moscow State University, 119899 Moscow, Russia, and
${ }^{\text {b }}$ Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, Amsterdam, 1018 WV, The Netherlands

Correspondence e-mail:
yatsenko@biocryst.phys.msu.su

Key indicators

Powder X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.032$
$w R$ factor $=0.042$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Chloro-2-(phenyldiazenyl)phenol from powder data: a form metastable at room temperature

The high-temperature form of the title compound, $\mathrm{C}_{12} \mathrm{H}_{9}$ $\mathrm{ClN}_{2} \mathrm{O}$, (I), was obtained from the melt. The molecule of (I) is almost planar; the dihedral angle formed by the planes of the phenyl rings is $8.0(5)^{\circ}$. Translationally related molecules form stacks with an interplanar separation of 3.41 (1) \AA.

Comment

The unit cell volume of this form is 2.8% larger than that of the room-temperature form, prepared by crystallization of (I) from an ethanol solution (Yatsenko et al., 2001). Thus the conclusion can be drawn that the room-temperature polymorph is the stable form, whereas the high-temperature form is metastable.

(I)

The hydroxy group forms an intermolecular hydrogen bond with the azo linkage $[\mathrm{O} 1 \cdots \mathrm{~N} 8=2.59(2) \AA]$.

The molecules form stacks along [001]; the angle between the normal to the molecular plane and the stack axis is $41.4(1)^{\circ}$. Neighbouring molecules belonging to different stacks are arranged side-by-side (Fig. 1). There are two interstack contacts shorter than the sum of van der Waals radii (Bondi, 1964), i.e. the herring-bone-type contact $\mathrm{C} 5 \cdots \mathrm{H} 12\left(\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z\right)(2.82 \AA)$ and $\mathrm{O} 1 \cdots \mathrm{H} 10(1-x, 1-y$, $-z$), which can be considered as a weak hydrogen bond [H10…O1 2.42, C10…O1 3.33 (1) \AA and $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1$ 151°].

Experimental

Compound (I) was prepared by the reaction of phenyldiazonium chloride with p-chlorophenol according to the established procedure of Socha \& Vecera (1969) and recrystallized from ethanol. The sample used for X-ray diffraction study was prepared from the melt (m.p. 384 K).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}$
$M_{r}=232.66$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=12.384$ (4) A
$b=19.767$ (6) \AA
$c=4.554$ (2) \AA
$\beta=93.27$ (3) ${ }^{\circ}$
$V=1113.0$ (7) \AA^{3}
$Z=4$
$D_{x}=1.389 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation

$$
\begin{aligned}
& \text { Cell parameters from } 22 \\
& \quad \text { reflections } \\
& \theta=4.5-17.1^{\circ} \\
& \mu=2.87 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Yellow } \\
& \text { Specimen shape: flat sheet } \\
& 25 \times 25 \times 2.0 \mathrm{~mm} \\
& \text { Particle morphology: irregular } \\
& \quad \text { block }
\end{aligned}
$$

Figure 1
Stacking arrangement adopted by (I).

Data collection

DRON-3M diffractometer (Burevestnik, Russia)
Specimen mounting: pressed as a thin layer in the specimen holder
Specimen mounted in reflection mode

Refinement

$R_{p}=0.032$
$R_{\text {wp }}=0.042$
$R_{\text {exp }}=0.025$
$S=1.71$
$2 \theta_{\text {min }}=7.8,2 \theta_{\text {max }}=70.0^{\circ}$
Wavelength of incident radiation: 1.5418 A

Excluded region(s): 7.00-7.78 ${ }^{\circ}$

Absorption correction: none
$h=0 \rightarrow 9$
$k=0 \rightarrow 14$
$l=-3 \rightarrow 3$
$2 \theta_{\text {min }}=7.0,2 \theta_{\text {max }}=70.0^{\circ}$
Increment in $2 \theta=0.02^{\circ}$

Profile function: split-type pseudoVoigt
115 parameters
H -atom parameters not refined
$(\Delta / \sigma)_{\max }=0.040$
Preferred orientation correction: spherical harmonics (Ahtee et al., 1989)

The monoclinic cell dimensions were determined with TREOR90 (Werner et al., 1985) and refined to $M_{20}=32$ and $F=48(0.0067,69)$ using the first 22 peak positions. The initial molecular model was built with MOPAC7.0 (Stewart, 1993) on the PM3 level (Stewart, 1989). The position and orientation of the molecule was determined using the grid-search procedure (Chernyshev \& Schenk, 1998). The X-ray diffraction profile and the difference between the measured and calculated profiles after the Rietveld refinement are shown in Fig. 2, final $R_{B}=0.087$. The Cl atom was refined anisotropically; C, N and O atoms were refined isotropically and were gathered together into groups with a common $U_{\text {iso }}$ parameter for each group. H atoms were placed in geometrically calculated positions and their isotropic displacement parameters were fixed at $B=9.0 \AA^{2}$. The planarity of

Figure 2
The Rietveld plot showing the observed and difference profiles. The reflection positions are shown above the difference profile. The highangle area is magnified by a factor of ten.
the phenyl groups was restrained. The anisotropy of diffraction-line broadening was approximated by a quartic form in $h k l$ (Popa, 1998). The standard uncertainties obtained from the Rietveld refinement were corrected for the serial correlation effects (Bérar \& Lelann, 1991).

Data collection: local program; cell refinement: LSPAID (Visser, 1986); program(s) used to solve structure: MRIA (Zlokazov \& Chernyshev, 1992); program(s) used to refine structure: MRIA; molecular graphics: PLUTON (Spek, 1992); software used to prepare material for publication: $P A R S T$ (Nardelli, 1983).

This work has been supported by the Netherlands Organization for Scientific Research (NWO).

References

Ahtee, M., Nurmela, M., Suortti, P. \& Jarvinen, M. (1989). J. Appl. Cryst. 22, 261-268.
Bérar, J.-F. \& Lelann, P. (1991). J. Appl. Cryst. 24, 1-5.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Chernyshev, V. V. \& Schenk, H. (1998). Z. Kristallogr. 213, 1-3.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Popa, N. C. (1998). J. Appl. Cryst. 31, 176-180.
Socha, J. \& Vecera, M. (1969). Collect. Czech. Chem. Commun. 34, 3740-3745. Spek, A. L. (1992). PLUTON. University of Utrecht, The Netherlands.
Stewart, J. J. P. (1989). J. Comput. Chem. 10, 209-220.
Stewart, J. J. P. (1993). MOPAC7.0. QCPE Program No. 455. Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN, USA.
Visser, J. W. (1986). Powder Diffr. 1, 66-76.
Werner, P.-E., Eriksson, L. \& Westdahl, M. (1985). J. Appl. Cryst. 18, 367-370.
Yatsenko, A. V., Paseshnichenko, K. A. \& Schenk, H. (2001). Acta Cryst. E57, o1154-o1155.
Zlokazov, V. B. \& Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.

